Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.595
Filter
1.
Sci Total Environ ; : 172956, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38719036

ABSTRACT

Paddy soil, as an ecosystem with alternating drained and flooded conditions, microorganisms in it can maintain the stability of the ecosystem by regulating the composition and diversity of its species when disturbed by external biotic or abiotic factors, and the regulatory mechanism in this process is a controversial topic in ecological research. In this study, we investigate the effects of pigeon feces addition on bacterial communities in three textured soils, two conditions (drained and flooded) based on microcosm experiment using high-throughput sequencing techniques. Our results show that pigeon feces addition reduced environmental heterogeneity and community diversity, both under flooded and drained conditions and in all textured soils, thereby decreasing the effectiveness of environmental selection and increasing diffusion limitations among bacterial communities. Bacterial communities are altered by environmental factors including total organic carbon, available nitrogen, total phosphorus, available phosphorus and available potassium, resulting in the formation of new community structures and dominant genera. Bacteria from pigeon feces did not colonize the original soil in large numbers, and the soil bacterial community structure changed, with some species replaced the indigenous ones as new dominant genera. As nutrient diffusion increases the nutrient content of the soil, this does not lead to species extinction; however, nutrient diffusion creates new nutrient preferences of the bacterial community, which causes direct competition between species, and contributes to the extinction and immigration species. Our results suggest that species replacement is an adaptive strategy of soil bacterial community in response to dispersal of pigeon feces, and that bacterial community regulate diversity and abundance of the community by enhancing species extinction and immigration, thereby preventing bacteria in pigeon feces from colonizing paddy soils and maintaining ecosystem stability.

2.
Biotechnol Biofuels Bioprod ; 17(1): 62, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38715100

ABSTRACT

BACKGROUND: The use of ionic liquids (ILs) to fractionate lignocelluloses for various bio-based chemicals productions is in the ascendant. On this basis, the protic ILs consisting of triethylammonium hydrogen sulfate ([TEA][HSO4]) possessed great promise due to the low price, low pollution, and high efficiency. In this study, the microwave-assistant [TEA][HSO4] fractionation process was established for corn stover fractionation, so as to facilitate the monomeric sugars production and supported the downstream acetone-butanol-ethanol (ABE) fermentation. RESULTS: The assistance of microwave irradiation could obviously shorten the fractionation period of corn stover. Under the optimized condition (190 W for 3 min), high xylan removal (93.17 ± 0.63%) and delignification rate (72.90 ± 0.81%) were realized. The mechanisms for the promotion effect of the microwave to the protic ILs fractionation process were ascribed to the synergistic effect of the IL and microwaves to the depolymerization of lignocellulose through the ionic conduction, which can be clarified by the characterization of the pulps and the isolated lignin specimens. Downstream valorization of the fractionated pulps into ABE productions was also investigated. The [TEA][HSO4] free corn stover hydrolysate was capable of producing 12.58 g L-1 of ABE from overall 38.20 g L-1 of monomeric sugars without detoxification and additional nutrients supplementation. CONCLUSIONS: The assistance of microwave irradiation could significantly promote the corn stover fractionation by [TEA][HSO4]. Mass balance indicated that 8.1 g of ABE and 16.61 g of technical lignin can be generated from 100 g of raw corn stover based on the novel fractionation strategy.

3.
J Econ Entomol ; 2024 May 06.
Article in English | MEDLINE | ID: mdl-38706118

ABSTRACT

Bombyx mori L. (Lepidoptera: Bombycidae) nucleopolyhedrovirus (BmNPV) is a serious pathogen causing huge economic losses to sericulture. There is growing evidence that the gut microbiota of silkworms plays a critical role in shaping host responses and interactions with viral infection. However, little is known about the differences in the composition and diversity of intestinal microflora, especially with respect to silkworm strain differences and BmNPV infection-induced changes. Here, we aim to explore the differences between BmNPV-resistant strain A35 and susceptible strain P50 silkworm and the impact of BmNPV infection on intestinal microflora in different strains. The 16S rDNA sequencing analysis revealed that the fecal microbial populations were distinct between A35 and P50 and were significantly changed post BmNPV infection in both strains. Further analysis showed that the BmNPV-resistant strain silkworm possessed higher bacterial diversity than the susceptible strain, and BmNPV infection reduced the diversity of intestinal flora assessed by feces in both silkworm strains. In response to BmNPV infection, the abundance of Muribaculaceae increased in P50 and decreased in A35, while the abundance of Enterobacteriaceae decreased in P50 and increased in A35. These results indicated that BmNPV infection had various effects on the abundance of fecal microflora in different silkworm strains. Our findings not only broadened the understanding of host-pathogen interactions but also provided theoretical help for the breeding of resistant strains and healthy rearing of silkworms based on symbiotic bacteria.

4.
Heliyon ; 10(9): e29879, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38711644

ABSTRACT

Background: Polycystic ovary syndrome (PCOS) is main cause of anovulatory infertility in women with gestational age. There are currently four distinct phenotypes associated with individualized endocrinology and metabolism. Growth differentiation factor 9 (GDF9) is a candidate as potential biomarker for the assessment of oocyte competence. The effect on oocyte capacity has not been evaluated and analyzed in PCOS phenotypes. Objective: We aimed to screen the expression levels of GDF9 in mature follicles of women with controlled ovarian hyperstimulation (COS) with different PCOS phenotypes. To determine the correlation between the expression level of GDF9 and oocyte development ability. Methods: In Part 1, we conducted a retrospective study comparing the clinical outcomes and endocrine characteristics of patients with PCOS according to different subgroups (depending on the presence or absence of the main features of polycystic ovarian morphology (PCOM), hyperandrogenism (HA), and oligo-anovulation (OA)) and non-PCOS control group. We stratified PCOS as phenotype A (n = 29), phenotype B (n = 18) and phenotype D (n = 24). In Part 2, the expression of GDF9 in follicular fluid (FF) and cumulus cells (CCs) were detected by enzyme-linked immunosorbent assay (ELISA) and immunohistochemistry, respectively. Results: In Part 1, the baseline clinical, hormonal, and ultrasonographic characteristics of the study population were matched with the presence or absence of the cardinal features of each PCOS phenotypes showed a clear difference. Phenotypes A and D had statistically significant associations with blastocyst formation and clinical pregnancy compared with phenotypes B (p < 0.001). In Part 2, the levels of GDF9 in FF and CCs for phenotype A and B were significantly were higher than those of phenotype D (P = 0.019, P = 0.0015, respectively). Multivariate logistic regression analysis showed that GDF9 was an important independent predictor of blastocyst formation (P<0.001). The blastocyst formation rate of phenotype A was higher than that of phenotype B and D (P<0.001). Combining the results of the two parts, GDF9 appears to play a powerful role in the development of embryos into blastocysts. Conclusions: GDF9 expression varies with different PCOS phenotypes. Phenotype A had higher GDF9 levels and blastocyst formation ability.

5.
Anal Chim Acta ; 1306: 342577, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38692784

ABSTRACT

BACKGROUND: Detection methods based on aptamer probes have great potential and progress in the field of rapid detection of heavy metal ions. However, the unstable conformation of aptamers often results in poor sensitivity due to the dissociation of aptamer-target complex in real environments. RESULTS: In this study, we developed a locking aptamer probe and combined it with AgInZnS quantum dots for the first time to detect cadmium ions. When cadmium ions are combined with the probe, the cadmium ions are fixed in the core-locking position, forming a stable cavity structure. The limit of detection (LOD) was achieved at a concentration of 6.9 nmol L-1, with a broad detection range from 10 nmol L-1 to 1000 µmol L-1, and good recovery rates (92.93%-102.8 %) were achieved in aquatic product testing. The locking aptamer probe with stable conformation effectively enhances the stability of the aptamer-target complex and remains good stability in four buffer environments as well as a 600 mmol L-1 salt solution; it also exhibits good stability at pH 6.5-7.5 and temperatures ranging from 25 °C to 35 °C. SIGNIFICANCE: Overall, our study presented a general, simple, and cost-effective strategy for stabilizing aptamer conformations, and used for highly sensitive detection of cadmium ions.

6.
J Hazard Mater ; 472: 134493, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38696960

ABSTRACT

Environmental pollution caused by plastic waste has become global problem that needs to be considered urgently. In the pursuit of a circular plastic economy, biodegradation provides an attractive strategy for managing plastic wastes, whereas effective plastic-degrading microbes and enzymes are required. In this study, we report that Blastobotrys sp. G-9 isolated from discarded plastic in landfills is capable of depolymerizing polyurethanes (PU) and poly (butylene adipate-co-terephthalate) (PBAT). Strain G-9 degrades up to 60% of PU foam after 21 days of incubation at 28 â„ƒ by breaking down carbonyl groups via secretory hydrolase as confirmed by structural characterization of plastics and degradation products identification. Within the supernatant of strain G-9, we identify a novel cutinase BaCut1, belonging to the esterase family, that can reproduce the same effect. BaCut1 demonstrates efficient degradation toward commercial polyester plastics PU foam (0.5 mg enzyme/25 mg plastic) and agricultural film PBAT (0.5 mg enzyme/10 mg plastic) with 50% and 18% weight loss at 37 â„ƒ for 48 h, respectively. BaCut1 hydrolyzes PU into adipic acid as a major end-product with 42.9% recovery via ester bond cleavage, and visible biodegradation is also identified from PBAT, which is a beneficial feature for future recycling economy. Molecular docking, along with products distribution, elucidates a special substrate-binding modes of BaCut1 with plastic substrate analogue. BaCut1-mediated polyester plastic degradation offers an alternative approach for managing PU plastic wastes through possible bio-recycling.

7.
Front Plant Sci ; 15: 1368692, 2024.
Article in English | MEDLINE | ID: mdl-38736445

ABSTRACT

In recent years, the ethylene-mediated ripening and softening of non-climacteric fruits have been widely mentioned. In this paper, recent research into the ethylene-mediated ripening and softening of non-climacteric fruits is summarized, including the involvement of ethylene biosynthesis and signal transduction. In addition, detailed studies on how ethylene interacts with other hormones to regulate the ripening and softening of non-climacteric fruits are also reviewed. These findings reveal that many regulators of ethylene biosynthesis and signal transduction are linked with the ripening and softening of non-climacteric fruits. Meanwhile, the perspectives of future research on the regulation of ethylene in non-climacteric fruit are also proposed. The overview of the progress of ethylene on the ripening and softening of non-climacteric fruit will aid in the identification and characterization of key genes associated with ethylene perception and signal transduction during non-climacteric fruit ripening and softening.

8.
Anal Chem ; 96(19): 7697-7705, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38697043

ABSTRACT

Dual/multimodal imaging strategies are increasingly recognized for their potential to provide comprehensive diagnostic insights in cancer imaging by harnessing complementary data. This study presents an innovative probe that capitalizes on the synergistic benefits of afterglow luminescence and magnetic resonance imaging (MRI), effectively eliminating autofluorescence interference and delivering a superior signal-to-noise ratio. Additionally, it facilitates deep tissue penetration and enables noninvasive imaging. Despite the advantages, only a limited number of probes have demonstrated the capability to simultaneously enhance afterglow luminescence and achieve high-resolution MRI and afterglow imaging. Herein, we introduce a cutting-edge imaging platform based on semiconducting polymer nanoparticles (PFODBT) integrated with NaYF4@NaGdF4 (Y@Gd@PFO-SPNs), which can directly amplify afterglow luminescence and generate MRI and afterglow signals in tumor tissues. The proposed mechanism involves lanthanide nanoparticles producing singlet oxygen (1O2) upon white light irradiation, which subsequently oxidizes PFODBT, thereby intensifying afterglow luminescence. This innovative platform paves the way for the development of high signal-to-background ratio imaging modalities, promising noninvasive diagnostics for cancer.


Subject(s)
Lanthanoid Series Elements , Magnetic Resonance Imaging , Nanoparticles , Polymers , Semiconductors , Magnetic Resonance Imaging/methods , Animals , Lanthanoid Series Elements/chemistry , Polymers/chemistry , Nanoparticles/chemistry , Mice , Humans , Gadolinium/chemistry , Luminescence , Singlet Oxygen/chemistry , Yttrium/chemistry , Fluorides/chemistry , Mice, Nude
9.
J Affect Disord ; 356: 737-752, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38649105

ABSTRACT

The onset of depression commonly occurs in adolescence; therefore, depressive prevention and intervention are pivotal during this period. It is becoming evident that neurotransmitter imbalance and gut microbiota dysbiosis are prominent causes of depression. However, the underlying links and mechanisms remain poorly understood. In this study, with 16S ribosomal RNA gene sequencing, genus Coprococcus markedly differentiated between the healthy and unmedicated depressive adolescents. Based on this, transplantation of Coprococcus eutactus (C.e.) was found to dramatically ameliorate the chronic restraint stress (CRS) induced depression-like changes and prevent synaptic loss and glial-stimulated neuroinflammation in mice. The Ultra-high performance liquid chromatography tandem mass spectrometry analysis (UHPLC-MS/MS) further showed that neurotoxic neurotransmitters in kynurenine pathway (KP) such as 3-hydroxykynurenine (3-HK) and 3-hydroxyanthranilic acid (3-HAA) decreased in mouse brains, mechanistically deciphering the transfer of the tryptophan metabolic pathway to serotonin metabolic signaling in the brain after C.e. treatment, which was also verified in the colon. Molecularly, blockage of KP activities mediated by C.e. was ascribed to the restraint of the limit-step enzymes responsible for kynurenine, 3-HK, and quinolinic acid generation. In the colon, C.e. treatment significantly recovered goblet cells and mucus secretion in CRS mice which may ascribe to the rebalance of the disordered gut microbiota, especially Akkermansia, Roseburia, Rikenella, Blautia, and Alloprevotella. Taken together, the current study reveals for the first time the beneficial effects and potential mechanisms of C.e. in ameliorating CRS-induced depression, unraveling the direct links between C.e. treatment and neurotransmitter rebalance, which may provide efficacious therapeutic avenues for adolescent depressive intervention.


Subject(s)
Depression , Gastrointestinal Microbiome , Neurotransmitter Agents , Restraint, Physical , Stress, Psychological , Animals , Mice , Gastrointestinal Microbiome/physiology , Stress, Psychological/metabolism , Stress, Psychological/complications , Depression/metabolism , Humans , Male , Neurotransmitter Agents/metabolism , Disease Models, Animal , Adolescent , Brain/metabolism , Kynurenine/metabolism , Kynurenine/analogs & derivatives
10.
Front Microbiol ; 15: 1288865, 2024.
Article in English | MEDLINE | ID: mdl-38633693

ABSTRACT

Background and aims: Soil salinity negatively affects crop development. Halotolerant nitrogen-fixing bacteria (HNFB) and arbuscular mycorrhizal fungi (AMF) are essential microorganisms that enhance crop nutrient availability and salt tolerance in saline soils. Studying the impact of HNFB on AMF communities and using HNFB in biofertilizers can help in selecting the optimal HNFB-AMF combinations to improve crop productivity in saline soils. Methods: We established three experimental groups comprising apple plants treated with low-nitrogen (0 mg N/kg, N0), normal-nitrogen (200 mg N/kg, N1), and high-nitrogen (300 mg N/kg, N2) fertilizer under salt stress without bacteria (CK, with the addition of 1,500 mL sterile water +2 g sterile diatomite), or with bacteria [BIO, with the addition of 1,500 mL sterile water +2 g mixed bacterial preparation (including Bacillus subtilis HG-15 and Bacillus velezensis JC-K3)]. Results: HNFB inoculation significantly increased microbial biomass and the relative abundance of beta-glucosidase-related genes in the rhizosphere soil under identical nitrogen application levels (p < 0.05). High-nitrogen treatment significantly reduced AMF diversity and the relative abundance of beta-glucosidase, acid phosphatase, and urea-related genes. A two-way analysis of variance showed that combined nitrogen application and HNFB treatment could significantly affect soil physicochemical properties and rhizosphere AMF abundance (p < 0.05). Specifically, HNFB application resulted in a significantly higher relative abundance of Glomus-MO-G17-VTX00114 compared to that in the CK group at equal nitrogen levels. Conclusion: The impact of HNFB on the AMF community in apple rhizospheres is influenced by soil nitrogen levels. The study reveals how varying nitrogen levels mediate the relationship between exogenous HNFB, soil properties, and rhizosphere microbes.

11.
Bioresour Bioprocess ; 11(1): 20, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38647990

ABSTRACT

Chitooligosaccharides (COS) find numerous applications due to their exceptional properties. Enzymatic hydrolysis of chitosan by chitosanase is considered an advantageous route for COS production. Heterologous expression of chitosanase holds significant promise, yet studies using commonly employed Escherichia coli and Pichia pastoris strains encounter challenges in subsequent handling and industrial scalability. In this investigation, we opted for using the safe yeast strain Saccharomyces cerevisiae (GRAS), obviating the need for methanol induction, resulting in successful expression. Ultimately, utilizing the GTR-CRISPR editing system, shake flask enzyme activity reached 2 U/ml. The optimal chitosanase activity was achieved at 55℃ and pH 5, with favorable stability between 30 and 50 °C. Following a 2-h catalytic reaction, the product primarily consisted of chitobiose to chitotetraose, predominantly at the chitotriose position, with a slight increase in chitobiose content observed during the later stages of enzymatic hydrolysis. The results affirm the feasibility of heterologous chitosanase expression through Saccharomyces cerevisiae, underscoring its significant industrial potential.

12.
Plants (Basel) ; 13(6)2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38592783

ABSTRACT

This study aimed to determine the effects of the nitrogen (N) application period and level on the fate of fertilizer N and the contribution of N absorption and translocation to apple organ N. Two N application periods (labeled by the 15N tracer technique in spring and summer, represented by SP and SU, respectively) and three N levels (N0, MN, and HN) were used to determine the physiological indexes and aboveground, root, and soil 15N content of 4-year-old dwarf ('Red Fuji'/M9T337) and arborized ('Red Fuji'/Malus hupehensis Rehd.) apple trees. The results showed that HN led to shoot overgrowth, which was not conducive to the growth of the apple root system (root length, root tips, root surface area, and root volume) or the improvement of root activity. The contribution of soil N to apple organ N accounted for more than 50%, and the contribution of N application in summer to fruit N was higher than that in spring. Under HN treatment, the proportion of soil N absorbed by trees decreased, while that of fertilizer N increased; however, the highest proportion was still less than 50%, so apple trees were highly dependent on soil N. Under MN treatment, fertilizer N residue was similar to soil N consumption, and soil N fertility maintained a basic balance. Under HN treatment, fertilizer N residue was significantly higher than soil N consumption, indicating that excessive N application increased fertilizer N residue in the soil. Overall, the 15N utilization rate of arborized trees (17.33-22.38%) was higher than that of dwarf trees (12.89-16.91%). A total of 12.89-22.38% of fertilizer 15N was absorbed by trees, 30.37-35.41% of fertilizer 15N remained in the soil, and 44.65-54.46% of fertilizer 15N was lost. The 15N utilization rate and 15N residual rate of summer N application were higher than those of spring N application, and the 15N loss rate was lower than that of spring N application. High microbial biomass N (MBN) may be one of the reasons for the high N utilization rate and the low loss rate of N application in summer.

13.
Anal Methods ; 16(16): 2569-2584, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38606427

ABSTRACT

The affinity sites of cadmium (Cd(II)) when binding to cysteine (Cys) and glutathione (GSH) were studied via thermodynamics and nuclear magnetic resonance (NMR) spectroscopy methods. The results showed that the Cd(II) binding sites of Cys and GSH were -SH (exothermic), -NH2 (endothermic) and -COOH (endothermic). The thermodynamic behaviour of Cd(II) binding to Cys/GSH in boric acid and HEPES buffers differed, with the former being mainly endothermic and the latter mainly exothermic. It could be inferred that, in the boric acid system, the main binding site of Cd(II) with Cys and GSH is changed from -SH in HEPES to -COOH and -NH2 in boric acid. This was confirmed by the results of NMR experiments of Cd(II) with Cys/GSH. 1D 1H-NMR experiments showed that, after the combination of Cd(II) and Cys, the changes in the chemical shifts and peak strengths of protons near the -SH group for the reaction in HEPES were greater than when boric acid buffer was used. Changes in the chemical shift and peak strength of the -NH2 protons due to the binding of Cd(II) to GSH were evident in the boric acid buffer but not in HEPES. The screening of functional monomers is very important in the process of preparation of cadmium ion-imprinted materials. This research provides important theoretical and experimental guidance for the screening of functional monomers.

14.
J Psychiatr Res ; 174: 101-113, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38626560

ABSTRACT

Depressive disorders are widely debilitating psychiatric disease. Despite the considerable progress in the field of depression therapy, extensive research spanning many decades has failed to uncover pathogenic pathways that might aid in the creation of long-acting and rapid-acting antidepressants. Consequently, it is imperative to reconsider existing approaches and explore other targets to improve this area of study. In contemporary times, several scholarly investigations have unveiled that persons who have received a diagnosis of depression, as well as animal models employed to study depression, demonstrate a decrease in both the quantity as well as density of astrocytes, accompanied by alterations in gene expression and morphological attributes. Astrocytes rely on a diverse array of channels and receptors to facilitate their neurotransmitter transmission inside tripartite synapses. This study aimed to investigate the potential processes behind the development of depression, specifically focusing on astrocyte-associated neuroinflammation and the involvement of several molecular components such as connexin 43, potassium channel Kir4.1, aquaporin 4, glutamatergic aspartic acid transporter protein, SLC1A2 or GLT-1, glucocorticoid receptors, 5-hydroxytryptamine receptor 2B, and autophagy, that localized on the surface of astrocytes. The study also explores novel approaches in the treatment of depression, with a focus on astrocytes, offering innovative perspectives on potential antidepressant medications.

15.
Food Chem ; 450: 139258, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38626710

ABSTRACT

Pesticide detection based on nanozyme is largely limited in terms of the variety of pesticides. Herein, a spherical and well-dispersed Fe3O4/graphene oxide nanoribbons (Fe3O4/GONRs) composite nanozyme was applied to firstly develop an enzyme-free and sensitive colorimetric and fluorescence dual-mode detection of thiophanate-methyl (TM). The synthesized Fe3O4/GONRs possess excellent dual enzyme-like activities (peroxidase and catalase) and can catalyze H2O2 to oxidize 3,3',5,5'-tetramethylbenzidine (TMB) into oxidized TMB (oxTMB). We found that Fe3O4/GONRs can adsorb TM through the synergistic effect of multiple forces, thereby inhibiting the catalytic activities of nanozyme. This inhibition can modulate the transformation of TMB to oxTMB, producing dual responses of absorbance decrease (oxTMB) and fluorescence enhancement (TMB). The limits of detection (LODs) of TM were 28.1 ng/mL (colorimetric) and 8.81 ng/mL (fluorescence), respectively. Moreover, the developed method with the recoveries of 94.8-100.8% also exhibited a good potential application in the detection of pesticides residues in water and food samples.

16.
Insect Biochem Mol Biol ; 169: 104125, 2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38616030

ABSTRACT

Voltage-dependent anion channel 2 (VDAC2) is an important channel protein that plays a crucial role in the host response to viral infection. The receptor for activated C kinase 1 (RACK1) is also a key host factor involved in viral replication. Our previous research revealed that Bombyx mori VDAC2 (BmVDAC2) and B. mori RACK1 (BmRACK1) may interact with Bombyx mori nucleopolyhedrovirus (BmNPV), though the specific molecular mechanism remains unclear. In this study, the interaction between BmVDAC2 and BmRACK1 in the mitochondria was determined by various methods. We found that BmNPV p35 interacts directly with BmVDAC2 rather than BmRACK1. BmNPV infection significantly reduced the expression of BmVDAC2, and activated the mitochondrial apoptosis pathway. Overexpression of BmVDAC2 in BmN cells inhibited BmNPV-induced cytochrome c (cyto c) release, decrease in mitochondrial membrane potential as well as apoptosis. Additionally, the inhibition of cyto c release by BmVDAC2 requires the involvement of BmRACK1 and protein kinase C. Interestingly, overexpression of p35 inhibited cyto c release during mitochondrial apoptosis in a RACK1 and VDAC2-dependent manner. Even the mutant p35, which loses Caspase inhibitory activity, could still bind to VDAC2 and inhibit cyto c release. In summary, our results indicated that BmNPV p35 interacts with the VDAC2-RACK1 complex to regulate apoptosis by inhibiting cyto c release. These findings confirm the interaction between BmVDAC2 and BmRACK1, the interaction between p35 and the VDAC2-RACK1 complex, and a novel target that BmNPV p35 regulates apoptosis in Bombyx mori via interaction with the BmVDAC2-BmRACK1 complex. The result provide an initial exploration of the function of this interaction in the BmNPV-induced mitochondrial apoptosis pathway.

17.
Curr Res Food Sci ; 8: 100727, 2024.
Article in English | MEDLINE | ID: mdl-38577418

ABSTRACT

The favorable inhibitory effect of tea polyphenols on heterocyclic aromatic amines (HAAs) has been confirmed in many past studies. The objective of this study was to investigate the structure-activity relationship of catechins that act as inhibitors of HAA formation in chemical models. Two kinds of quantitative structure-activity relationship models for catechin-inhibiting-HAA were established. We chose two kinds of HAAs including 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) and 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx), and five catechins including epigallocatechin gallate (EGCG), epicatechin gallate (ECG), epigallocatechin (EGC), epicatechin (EC), and catechin (C). The inhibitory effect of five catechins were in the following order: EGCG > ECG > EGC > C > EC. Thereinto, EGCG and ECG showed dramatically better inhibition on the formation of PhIP and MeIQx, especially EGCG. Further, the mechanisms of catechin-inhibiting-HAA were speculated by correlation analysis. The free radical-scavenging ability was predicted to be the most relevant to the inhibitory effect of ECG, EGC, EC and C on HAAs. Differently, the phenylacetaldehyde-trapping ability might be the more important mechanism of EGCG inhibiting PhIP in chemical model system. This study may bring a broader idea for controlling the formation of HAAs according to the structure of catechins.

18.
Indian J Dermatol ; 69(1): 106, 2024.
Article in English | MEDLINE | ID: mdl-38572032

ABSTRACT

Objective: This study aims to investigate the relationship between serum vitamin D, total IgE levels and chronic spontaneous urticaria (CSU). Methods: We collected data from 101 patients with chronic spontaneous urticaria (experimental group) and 115 healthy normal subjects (control group) in the same period of physical examination. Results: The results showed that the number of deficient and absolute deficient 25-hydroxyvitamin D in the experimental group was significantly lower than in the control group (P < 0.05). Pearson correlation analysis showed that the activity score of CSU patients was negatively correlated with serum vitamin D (r = -0.2278, P = 0.0220) and positively correlated with IgE (r = 0.2078, P = 0.0380). It was observed that serum vitamin D in CSU patients was negatively correlated with their activity (r = -0.2278, P = 0.0220) and positively correlated with age (r = 0.2675, P = 0.0069). The Point-biserial correlation analysis revealed that gender was positively correlated with serum vitamin D (Pearson correlation coefficient = 0.286, P = 0.004) and UAS score (Pearson correlation coefficient = 0.273, P = 0.006). Ordinal logistic regression analysis showed that only serum vitamin D was correlated to activity scores (P = 0.008). In addition to activity scores, age (P = 0.005) and gender (P = 0.04) were correlated to serum vitamin D. Conclusion: The activity score of CSU patients was negatively correlated with serum vitamin D and positively correlated with IgE. Serum vitamin D in CSU patients was negatively correlated with activity score and disease duration and positively correlated with age and gender.

19.
Sci Total Environ ; 928: 172422, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38614329

ABSTRACT

The oily wastewater and heavy metal ions have been increasingly discharged into water environment, posting a serious threat to ecosystems and human health. However, it remains challenging to use single separation technology to effectively remove oil and heavy metal ions in oil-water mixtures simultaneously. Herein, novel hydrophobic/hydrophilic composites (HHC) were successfully prepared by using A4 paper-derived hydrophilic cellulose as the modified matrix, modifying the polydopamine layer and in-situ growth nanoscale zero-valent iron as active adsorption materials, combined with oleic acid-modified hydrophobic magnetic hollow carbon microspheres, which were used to efficiently and rapidly adsorb heavy metals and oil in oil-water mixtures. Under the optimal adsorption conditions, the adsorption amounts of As(III), As(V), Pb(II) and Cu(II) were 289.6 mg/g, 341.9 mg/g, 241.2 mg/g and 277.5 mg/g, respectively, and the mass transfer rate of HHC to the target ions is fast. The HHC have efficient separation performance for layered oil-water mixtures and emulsified oil-water mixtures, with separation efficiency of 97 % and 92 %. At the same time, due to the abundant adsorption sites, the HHC also exhibit splendid regeneration performance for the four ions after multiple adsorption utilization. Our work designed a approach to achieving promising oil and heavy metal adsorbents with higher adsorption capacity and better regenerative properties.

20.
Food Chem ; 450: 139150, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38688226

ABSTRACT

This study aimed to investigate taste substances of shrimp heads stored at 20 °C, 4 °C, -3 °C, and - 18 °C, and the correlation between taste substances and 25 key volatile substances. Notably, samples stored at 20 °C showed significant changes in bitter amino acids and hypoxanthine, and quickly deteriorated. Samples stored at 4 °C for 14 d or - 3 °C for 30 d facilitated the development of umami amino acids, sweet amino acids, and IMP. Furthermore, samples stored at -18 °C for 30 d demonstrated no significant changes in taste profile. Changes in taste substances through quantitative analysis were consistent with changes in taste profile through e-tongue analysis. Based on the results of O2PLS (VIP > 1), Cys, Arg, Glu, Ser, Val, Ala, Ile, ADP, and IMP were correlated with 25 key volatile substances. This study provides fundamental data for the storage, transportation, and value-added utilization of shrimp heads.

SELECTION OF CITATIONS
SEARCH DETAIL
...